پیش بینی بارش ماهانه با مدل درختی M5 و مقایسه آن با روشهای کلاسیک آماری )مطالعه موردی : ایستگاه سینوپتیک ارومیه(
author
Abstract:
در این تحقیق جهت تخمین دادههای بارش ماهانه ایستگاه ارومیه که از سال 2006 تا 2007 مفقود فرض شده است از روشهای آماری کلاسیک و مدل درختی M5 با استفاده از نرمافزارWeka و به کارگیری ایستگاههای مهاباد، خوی، سلماس، تکاب و ماکو استفاده شده است. در بین ایستگاههای مورد مطالعه، ایستگاه مهاباد با (r=0.90) بیشترین همبستگی را با ایستگاه ارومیه داشت. 26 سناریو از آمار ده ساله ایستگاههای مجاور در تخمین بارش ماهانه ایستگاه شاهد (ارومیه) به نرمافزار Weka معرفی شده است که از بین سناریوها، سناریویی که شامل سه ایستگاه مهاباد، ماکو و تکاب با MAE=7.19, r=0.9, RMSE=9.64 به دلیل کم بودن پارامترهای ورودی به مدل به عنوان ساده-ترین و دقیقترین سناریو به مدل تعریف گردید. از بین روشهای کلاسیک ، روش بهترین تخمینگر منفرد (SIB) بهترین روش با بیشترین ضریب همبستگی و کمترین خطا r=0.90,RMSE=10.51,MAE=7.07انتخاب شده است. مدل درختی M5 در برآورد دادهها با r=0.91,RMSE=9.94,MAE=7.29 بهترین عملکرد را داشته است و به دلیل ارائه روابط خطی ساده و قابل فهم به عنوان روشی جایگزین و کاربردی در محاسبه دادههای بارش ماهانه مورد توجه قرار میگیرد.
similar resources
پیشبینی مقادیر بارش ماهانه با استفاده از شبکههای عصبی مصنوعی و مدل درختی M5 (مطالعۀ موردی: ایستگاه اهر)
بارش یکی از مهمترین اجزای چرخۀ آب است و در سنجش خصوصیات اقلیمی هر منطقه، نقش بسیار مهمی ایفا میکند. تخمین مقادیر بارش ماهانه برای اهداف مختلفی چون، برآورد سیلاب، خشکسالی، برنامهریزی آبیاری و مدیریت حوضههای آبریز، اهمیت زیادی دارد. پیشبینی بارش در هر منطقهای نیازمند وجود دادههای دقیق اندازهگیریشدهای مانند، رطوبت، دما، فشار، سرعت باد و غیره است. محدودیتهایی چون، نبود اطلاعات کافی در مو...
full textبررسی کارایی مدل درخت تصمیم در پیش بینی بارش (مطالعه موردی ایستگاه سینوپتیک یزد)
وقوع خشکسالی اثرات نامطلوبی بر بخشهای کشاورزی و اقتصادی کشور و به طور خاص بر عرصههای طبیعی تحمیل میکند. امروزه روشهای مختلفی جهت پیش بینی مؤلفههای اصلی خشکسالی از جمله بارش ارائه شده است. در دهههای اخیر، استفاده از مدلهای جدید کامپیوتری در این زمینه رواج یافته و در اغلب موارد توانایی خود را به خوبی نشان داده است. درخت تصمیم به عنوان یکی از این نوع مدلها، با بررسی پارامترها از جزء به کل،...
full textپیشبینی مقادیر بارش ماهانه با استفاده از شبکههای عصبی مصنوعی و مدل درختی m5 (مطالعۀ موردی: ایستگاه اهر)
بارش یکی از مهمترین اجزای چرخۀ آب است و در سنجش خصوصیات اقلیمی هر منطقه، نقش بسیار مهمی ایفا میکند. تخمین مقادیر بارش ماهانه برای اهداف مختلفی چون، برآورد سیلاب، خشکسالی، برنامهریزی آبیاری و مدیریت حوضههای آبریز، اهمیت زیادی دارد. پیشبینی بارش در هر منطقهای نیازمند وجود دادههای دقیق اندازهگیریشدهای مانند، رطوبت، دما، فشار، سرعت باد و غیره است. محدودیتهایی چون، نبود اطلاعات کافی در مو...
full textمقایسه تأثیر وضعیت طاق باز و دمر بر وضعیت تنفسی نوزادان نارس مبتلا به سندرم دیسترس تنفسی حاد تحت درمان با پروتکل Insure
کچ ی هد پ ی ش مز ی هن ه و فد : ساسا د مردنس رد نامرد ي سفنت سرتس ي ظنت نادازون داح ي سکا لدابت م ي و نژ د ي سکا ي د هدوب نبرک تسا طسوت هک کبس اـه ي ناـمرد ي فلتخم ي هلمجزا لکتورپ INSURE ماجنا م ي دوش ا اذل . ي هعلاطم ن فدهاب اقم ي هس عضو ي ت اه ي ندب ي عضو رب رمد و زاب قاط ي سفنت ت ي هـب لاتـبم سراـن نادازون ردنس د م ي سفنت سرتس ي لکتورپ اب نامرد تحت داح INSURE ماجنا درگ ...
full textبررسی کارایی مدل درخت تصمیم در پیش بینی بارش (مطالعه موردی ایستگاه سینوپتیک یزد)
وقوع خشکسالی اثرات نامطلوبی بر بخش های کشاورزی و اقتصادی کشور و به طور خاص بر عرصه های طبیعی تحمیل می کند. امروزه روش های مختلفی جهت پیش بینی مؤلفه های اصلی خشکسالی از جمله بارش ارائه شده است. در دهه های اخیر، استفاده از مدل های جدید کامپیوتری در این زمینه رواج یافته و در اغلب موارد توانایی خود را به خوبی نشان داده است. درخت تصمیم به عنوان یکی از این نوع مدل ها، با بررسی پارامترها از جزء به کل،...
full textMy Resources
Journal title
volume 13 issue 4
pages 179- 183
publication date 2017-12-22
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023